时间:2022-05-20 来源:原创 人气:6174
显然,如果只有一只耳朵工作,肯定是无法判断声音来自何方了。
麦克风阵列是指由两个或多个麦克风按照一定的几何结构排列而成的阵列。按照拓扑结构不同,麦克风阵列可以分为均匀线性阵列、非均匀线性阵列、非线性阵列、环形阵列、平面阵列、立体阵列等。
阵列类型
线性阵列可以定位一个角度,即只能定位方位角,无法定位仰角。平面阵列可以定位方位角和仰角,实用性更强,但也意味着更复杂的计算,无法进行定距。立体阵列既可以定向也可以定距。
圆形坐标定向示例(θ1---俯仰角,φ1---方位角)
目前线性阵列和平面阵列是常见的两类阵列。线性阵列常见于会议拾音、教室吊麦等;平面阵列在智能音箱、声学照相机等设备中更为常见。立体阵列见于反狙击手系统。
桌面线性麦克风阵列
鸣笛抓拍用麦克风阵列(平面阵列)
反狙击手系统
所谓声源定位,就是利用一组按照一定几何位置摆放的麦克风定出声源的空间位置。对于空间中位于不同位置的两个麦克风而言,声源只要不位于它们之间的中线上,那么它们和声源之间的距离就存在差异,如下图所示。可以看出,声源与两个麦克风之间存在距离差△L=Cτ,因此,声波到达两个麦克风的信号在时间上存在时延τ=△L/C。理想情况下,麦克风i和j接收的信号满足关系Si=Sj(t-τ)。
假设麦克风的数量为M,第i个麦克风接收到的信号为,对进行时延对齐后,累加可得
上式中,指的是当阵列指向搜索点时的可控时延,与麦克风的数量、阵列孔径、声源的入射角以及采样频率成正比,与声音的传播速度成反比。累加输出的功率,即波束的功率为
是的频域表示。声源的位置可按照下式计算:
通过控制阵列方向来引导波束,使波束输出功率大的点就是声源的位置。
麦克风阵列的性能指标包括主瓣宽度(波束宽度)、旁瓣增益、阵列增益等。从定位的角度出发,阵列增益是无关的性能指标,需要考虑主瓣宽度和旁瓣增益这两个指标。
波束图示例
通常情况下,在麦克风数量相同的情况下,麦克风分布形式越规则,主瓣宽度和旁瓣增益会越大。下面给出了两个麦克风阵列构型,都由32个麦克风构成,从对应波束图中可以明显看到这一规律。因此,在设计麦克风阵列时,应该尽可能地设计优化构型,而不是选择均匀的规则构型。
规则型阵列及其波束图
非规则型阵列及其波束图
目前,得到广泛应用的声学定位技术莫过于交通领域中的鸣笛抓拍系统了,实际上这也是声学照相机的一个具体应用。纵观市场上已有的鸣笛抓拍系统,基本都是由一个平面麦克风阵列、一个电警(卡口)相机和主机组成,麦克风阵列用于鸣笛声音定位、相机用于识别鸣笛车辆车牌并抓拍图片生成证据。
系统的整个抓拍流程如下图所示。在前端,系统捕获到机动车鸣笛声音,启动定位分析软件进行定位,如果定位结果位于抓拍视野范围内,则启动高清相机进行抓拍;根据定位坐标,进行相关车辆的车牌识别,如果能够识别出符合要求的车牌,则将车牌推送到LED屏显示,同时生成完整证据链,包括车牌图片及识别结果、车辆特写、车辆全景、鸣笛云图、鸣笛声纹图和鸣笛过程的音视频(叠加云图),并将其推送到后台。
鸣笛抓拍工作流程
系统计算监测路面有效探测区域的声音大小分布,用颜色表示声音相对大小生成声音分布图,声音分布与高清图片叠加形成声音云图,对鸣笛声连续采集分析,持续生成声音云图,声音云图叠加到视频上连续播放生成“声音视频”;同时,自动生成4张图片(违法时刻车辆全景图、全景云图、车辆特写图和车牌特写与鸣笛频谱图)和音视频证据,其证据支持添加水印信息、防伪信息。证据信息如下图所示。
A1:不会。首先在算法上进行处理,如果两车距离特别近,后车鸣笛声音会被前车遮挡,到达声呐阵列已经不是直达波,可以在定位算法上排除这种定位结果,不予定位抓拍;其次,通过对抓拍图像的结构化处理,设计合适的定位光斑与车辆方框的“容纳”算法,可准确判断鸣笛光斑所在车辆位置。
A2:不会。对抓拍图像进行结构化处理,可以准确区分出电动车/摩托车、机动车、自行车等,根据定位光斑的位置,可以准确判断出鸣笛来自于电动车/摩托车。
A3:如果多台车在同一时刻按下喇叭,又在同一时刻松开喇叭,那么这段时间只会定位一台鸣笛车辆;如果两台车的按喇叭时刻前后相差数十毫秒以上,系统可以定位到两台车辆。
扫一扫加好友咨询